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Abstract

Rotor coherent state constructions are given for the Wigner supermultiplet SU(4)D

SU(2)xSU(2) and for the special irreducible representations [NO] of the SO(5)D SO(3)DSO(2)

group chain in exact parallel with the rotor coherent state construction for the SU(3)D

SO(3)D SO(2) case given by Rowe, LeBlanc, and Repka. Matrix elements of the coherent
state realizations of the group generators are given in all cases by very simple expressions

in terms of angular momentum Wigner coefficients involving intrinsic projection labels K.

The K:-matrix technique of vector coherent state theory is used to effectively elevate these

K labels to the status of good quantum numbers. Analytic expressions are given for the

(K:K:t)-matrices for many of the more important irreducible representations.
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1 Introduction

In the past few years two types of coherent state constructions have been widely used to give very

explicit matrix representations of many higher rank symmetr_r groups. In both, the irreducible

representations of a larger group are constructed by an induction process from the irreducible

representations of a simpler subgroup, hopefully with completely known Wigner-Racah calculus.

In the more widely used first type of vector coherent state construction, [1], [2], [3], state vectors

are mapped onto states of a multi-dimensional harmonic oscillator through a set of Bargmann

variables, z. This VCS construction has been widely used for many of the mathematically natural

group chains such as V(n) D U(n-1) x U(1) D U(n-2) x V(1) D... for which the subgroup chain

gives a complete labelling of the state vectors. In the more recent second type of coherent state

construction rotor expansions are used which are particularly effective for many of the physically

relevant group chains for which an SO(3) or SU(2) subgroup related to a physically meaningful

angular momentum is the important subgroup in the group chain.

In this talk I want to focus on three group chains with particular relevance for nuclear structure

problems: 1) The SU(3) D SO(3) D SO(2) chain of the 3-dimensional harmonic oscillator of

the nuclear shell model with good orbital angular momentum; 2) The SU(4) D SU(2) x SU(2)

Wigner supermultiplet with good spin and isospin needed to complement the orbital functions of

1); and finally, the SO(5) D S0(3) D SO(2) chain needed e.g. for the 5-dimensional harmonic

oscillator of the quadrupole phonon states of the Bohr-Mottelson collective model or for two of the

important symmetry group chains of the interacting boson model of Iachello and Arima, [4]. Like

all physically relevant group chains, all three suffer from a missing label problem. For all of them

many solutions have been proposed for this problem, some of them highly practical, others quite

elegant or numerically feasible; see e.g. the pioneering work of Moskinsky [5], [6], [7]. It is the

purpose of this presentation to try to convince you that the new rotor coherent state constructions

give a very elegant yet also very systematic and practical solution to the missing label problem.

Moreover the solution is essentially exactly the same for all three examples.

2 The Rotor Coherent State Expansion for the SU(3) D

SO(3) Case

For the SU(3) scheme in a basis of good orbital angular momentum a coherent state rotor expansion

has recently been given by Rowe, LeBlanc, and Repka, [8]. This construction is closely parallel to

the seminal work of Elliott [9], [10], [11] in which an angular momentum projection label, K, the

projection of the orbital angular momentum onto an intrinsic or body-fixed z'-axis is used in place

of the missing quantum number in the SU(3) D SO(3) D SO(Z) scheme. Only a brief synopsis of

this work will be given, the details of the derivations being reserved for the second example.

In the rotor coherent state construction for SU(3) an arbitrary state vector, I@ >, is trans-

formed into its coherent state wave function, @(fl),

• (a) = (1)

where I¢(au) > is the highest weight state in the SU(3) D SU(2) x U(1) scheme, tIere R(_) is a
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standard rotation operator

R(_) : eiaL'eiBL_e i'yL_ (2)

where c_, _, 7 are Euler angles, Li are space-fixed components of the orbital angular momentum

operator, and where the scalar product is defined in terms of the standard angular measure

(Note, however, that the conventions for the R(Q) of ref [8] are somewhat different from the

most widely used nuclear physics conventions [12].) If I_ > is expanded in angular momentum

eigenvectors lu;LM>, where v is shorthand for all additional quantum numbers, these angular

momentum base vectors are mapped into their coherent state realizations

= Y_(¢<_.)lv; LK)DL'M(_)
K

]2L + 1

= _K cKV g_ DL'M(a)"
(4)

That is, angular momentum eigenstates are mapped into a basis of (normalized) D-functions which

form a simple orthonormal set with respect to the rotational measure of eq. (3). The symmetries

of the cK are such that the symmetrized, orthonormal rotor basis

(2L + 1) {DLM(fl) + (--1);_+"+LDL_.KM(Q)} (5)16r2(1 + _K0)

is most convenient. Operators, O, are then mapped into their coherent state realizations, F(O),

through
r(o)_(o) = (¢(_.)IR(_)OI_). (6)

It will of course be convenient to express all operators in terms of spherical tensors of rank, r, such

that

r(o:)_(n) = (¢(x.)lR(n)OZl_)

= (¢(_.)IR(a)O_R(_)-' R(_)I@)

= _F, DL,(_)(C(_,)IOgR(_)I@). (7)
k

The SU(3) group generators are the 3 components of the orbital angular momentum operators,

L_, and the 5 components of the Elliott (,_#-preserving) quadrupole operator, Q_. The rotor

realizations F(L 1) are given in terms of their usual Euler angle realizations

F(Lo)- 1 O r(L.)=e+"_{icotSO-_+ 0--_} , (8)
i 07' 07

where F(L0) has eigenvalue M, while F(L+), (F(L_)) are standard M-raising, (lowering) operators.

Eq. (7) shows that we need both the standard (right-action) rotor realizations of operators, 0_,

as well as their left-action version which will be denoted by a F,

-- r r

F(Ok)_(f_)-- (¢(_,.)lOkR(f_)l_) • (9)
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The latter can be evaluated from the left action of the operator on the SU(3) highest weight state.

For the angular momentum generators

F(L_)_,,;LM(12) = (¢(_,.)lL1R(_'l)lv; LM)

= _ DLM(n)(¢(_,)ILIlv; LK)
K

= Y_ D_,.M(_)x/L(L + 1)(LKlklL(K + k))(¢(,x.)lv; L(K + k))
K

= _ D_K_k)M(al_/L (L + 1)(L(K - k llklLK){¢(:_,)lv; LK),
K

(10)

so that F(L+), (f'(L_)) are now K-lowering, (raising) operators, a well known property of the

intrinsic (body-fixed) components of angular momentum operators. The ['(Lk) can therefore be

given in terms of their Euler angle realizations through the well known rotor expressions for
intrinsic components,

F(L0)= 10.i0_' f'(L_)=e_:i_{sin/30.y icot/3 +_--_}; (11)

where f'(L0) has the simple eigenvalue K. The coherent state realizations of the quadrupole oper-

ator as given by Rowe, LeBlanc, and Repka [4] are

r(Q ) = +. + 3)D02m(a)1 2 27[ L , Dora(a)]

+y/_{n_m(gl)(#- ['(L0)) + n2_2m(fl)(_ + ['(L0))}, (12)

i.e., these are expressed in terms of the very simple operators, L 2, F(L0), and simple D-functions.

The well-known matrix elements of these D-functions in the orthonormal rotor basis of eq. (5) at
once lead to the (standard) angular-momentum reduced matrix elements

{K; L'IIF(Q2)IIK; L} = _/(2L + 1){ {LK2OIL'K)[(2A -t- I_ + 3)

-_L(L1,, + 1)+ ½L(L + 1)]+ _Kl{L12 -- 21L'I)_(--1)L+;_+I(p + 1), } (13)

((K + 2);L'IIr(Q2)IIK; L) = _/(2L+l){LK2 4- 21L'(K :l=2)_2a_(p _ K)aKK,, (14)

with ¢rKK, = vf2 for either K or K' = 0, and alcg, = 1 otherwise. The simplicity of this result

is negated partly by the fact that the F(Q_) are nonunitary realizations of these operators. In

order to translate the above nonhermitian matrix elements into the hermitian matrix elements of

Q_ in ordinary Hilbert space, the aonunitary realizations, F(O), of coherent state constructions

is converted to a unitary realization 7(0) via the )_-operator equation

= pc-'r(o) c. (15)

Matrix elements of the K: and _--1 operators can then be used to convert the nonhermitian matrix

elements of F(O) to hermitian form 7(0) and hence directly to hermitian form in ordinary Hilbert
space. Thus

{u'; L'IIQ2IIu; L) = __, (K,-_(L')),,,_,-,{K'; L'IIF(Q2)IIK; L}(]C(L))K,,
K,K _

(16)
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where the new quantum numbers, v, are defined through the eigenvalues of the hermitian matrix

(/CKTt) which can be calculated in coherent state theory by simple recursion techniques through the

known matrix elements of the group generators F(Q2). The (/C/CI)KK, matrix elements, moreover,

can be given in simple analytic form [13] as functions of X,/t, and L. As a simple example, the

(/c/Ct) matrix for the irreducible representations (_2) with X-L = even is 2-dimensional, with K=2

or 0, in the basis of eq. (5), with

(/C/C})22= _[2(A + 3)2 - L(L + I)]C

(/c/c})oo= [2(A+ 2)2 - L(L + 1)]C

(/C/Ct)2 0 = ¢½(L- 1)L(L + 1)(L + 2)C, (17)

with

C = N/(A + 2- L)!!(X + L + 3)!!, (18)

with

g = (X - 1)![(X + 4)!! for X = even, (19)
2(A + 3) for )t= odd; N = A!!(A2(A++2)3)!!

where M! = X ($-2) ... 2 (or 1). The (/c/ct)-matr,x can be converted into the needed matrix

elements of/C and/C-, through the unitary matrix, U, which diagonalizes the hermitian matrix

/c/ct
= (20)

with
1 (21)= - "

defined for all states v with non zero eigenvalue, A_. Note, that a zero eigenvalue A_ signals a

forbidden state. The matrix of eq. (17), e.g., has one zero eigenvalue for L = X + 2; so that there

is but a single allowed state for this maximum L-value. For L > (X+2) the matrix elements of

F(Q 2) insure that all matrix elements of/C/Ct are zero. The/C-matrix technique of coherent state

theory thus effectively converts the Elliott K-projection label to the status of a good quantum

number.

It should, however, be stressed that the coherent state construction outlined here is very closely

related to the Elliott angular momentum projection technique [10]. The matrix elements of Q_

in the form of eqs. 13) and 14) have essentially been given by Elliott in ref. [10]. Except for an

overall normalization, (see eq. (19), which is related to the fact that the 1-dimensional (/C/C'f) for

the minimum L-value of 0 (or 1) is chosen to be unity in the coherent state construction), the

(/c/ct)-matrix elements are given by the overlap matrix of Elliott (see e.g., eq. (A.3) for A(KLK')

of ref. [11]; and the specific analytic functions given by Vergados for the lower/t-values in table

2A of ref. [14]).
What then are the advantages of the coherent state rotor construction? By mapping the SU(3)

angular momentum eigenstates onto the orthonormal basis, eq. (5), of the rotor expansion the

construction of matrix elements is split into two clearly separated simple steps: In step 1, ma-

trix elements of F(O) are given very simply in the orthonormal rotor basis where K defines the
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orthonormal states. In step 2, which is the unitarization process, K is converted to the quan-

tum number v in ordinary Hilbert space. By relating v to the non-zero eigenvalues of (]C/C_) an

essentially author-independent choice can be made for the quantum number v. Although some

numerical work is required in the determination of the U-matrix elements which diagonalize the

multi-dimensional (]CK:f)-matrices; no arbitrary choices are made in a Gram-Schmidt orthonor-

malization process, as in the Vergados basis [14], which is an attempt to make the Hilbert space

quantum number, (the x of ref. ([14]), as close as possible to the Elliott projection label g. (In
this connection, it is interesting to note that both x and v tend to pure K-values in the limit A

>> L as a glance at the special example of eq. (17) will verify.

3 A Double Rotor Coherent State Expansion for the

Wigner Supermultiplet SU(4) SU(2) x SU(2).

A complete labelling scheme for the Wigner supermultiplet has been achieved by Draayer [15]

who used the Elliott angular momentum projection technique to augment the spin and isospin

quantum numbers (SMs), (TMT) with the projection labels Ks and KT. In order to calcu-

late the generator matrix elements and SU(4) reduced Wigner coefficients in this fully labelled

but nonorthogonal basis, however, Draayer first calculates the transformation coefficients to the

canonical fully specified orthonormal V(4) :3 U(3) _ U(2) :3 V(1) basis, leading to a somewhat la-

borious calculational algorithm. This example therefore will fully illustrate the power of the rotor

coherent state construction which leads in a very simple and direct way to the desired results.

The supermultiplet scheme is based on the four spin-charge states of a single nucleon, Im_mt),
with nucleon, [ms mt >, with

1 1 1 1[a) = 1+$+$>, Ib)=] 2 2>,

1 x>, Id)=l 1 1]c) = 1'+2 2 _+$>. (22)

To gain the most co_,venient double rotor expansion it will be useful to define the basis states
1i), i= 1,...,4, by

1 1

Ia) -- _(ll)+12)), Ib) -- _(-11) +12)),

1 1

Ic) - v_(13)+l 4 )), Id)=_(-I 3)+14)), (23)

and define the 15 supermultiplet generators [17], S,T, and E = aT in terms of U(4) generators,
Cij,

Cij X-" a t .a .= _ ,_, _,3, i,j = l, . . ,4 (24)
t3t

where i, j give the spin, isospin quantum numbers and _ stands for all additional (orbital) quantum

numbers needed to specify the single nucleon creation and annihilation operators. In terms of the
Cij the generators are

1 CS 0 : _( 12"_- C21 _C34-_-C43)
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S+

S_

To

T+
T_

E0o

Em

E-lo

EOl

Eo-1

Ell

E-1-1

El-1

E-11

_(C13+ C23 + C,4 +

_(C3,+ C32 + C4, +

l(Cll -_- C22 - C33 -

= [(-Cl_- C_ + C14+ C:_- C31+ C32- C4,+ C42)
= _(-C3, - C32 + C4, + C4_ - C,3 + C23 - C,4 + C24)

= _(c,_ + c_, - c,, - c,_)
= C_4 + C3, - C32 - 6"4,+ C42)

= C42 _- C13 - C23 - C14 Jr C24)

= C44)

= 2@2 (C13 -_- C23 - C14 - C24 -- C31 _- C32 - C41 AT- C42),

2_(--C31 -- C32 -_ C41 _- C42 _- C13 -- C23 _- C14 C24),

_ _(-c,_ - c_ - c,., - c_.,+ c_, - c,_ + c.,, - c.,,),
] (C31 _- C32 -11- C41 -4- C42 -- C13 Jr C23 - C24 _- el4),-

- '(-C,, + C22 + C,2 - C2,)

- '(-C,, + C22 - C,2 + C2,),--

= ½(c_ - c,.,- c_, + c,_),

= ½(c_ - c,, + c_, - c,_). (25)

The SU(4) irreducible representations are labelled by 4-rowed Young tableaux partition labels

[fl,f2,fa,f4], by the SU(4) labels {)h, A2, Aa}, or by the Wigner supermultiplet (or standard Cartan

SO(6) labels (P, P', P")), with

_, = A-A, :_=A-f_, _=A-A,
P - + 2A, + _(A, + = _(A, - A3). (26)-½(X, A3), P'=' A3), P" '

These characterize the highest weight state I¢) with

Clj[¢)=O for i<j
C,,1¢)= (.X,+ .X_+ '_)1¢>,
C3_1¢>= .X_I¢), C.,.,1¢>= O.

C_1¢)= (.X_+ "_)1¢>,
(27)

The double rotor expansion uses the double rotation operator R(f_) - R(fIs)R(i2T), with

Euler angles o_s, _s, 7s =-- fls and (_T,/_T, 7T -- 12T in the spin and isospin space. Draayer [15] has

shown that the set of states, {R (f_) 1¢)}, obtained by rotation of the highest weight state through

all possible angles o_s,..., 7T span the full SU(4) space. Arbitrary state vectors Iq_) in this space

are now tranformed into their coherent state realizations with coherent state wave function

,_(a) = (¢lR(a)l_). (28)

A state [aSMsTMT) with definite spin and isospin quantum numbers is represented by

9_SMsTM_(fl)= <¢IrC(a)I_SMsTMr)=
(¢IaSE sTE T)Dj,sM s (f_s)DKrMr (f_r).

Ks,KT

(29)
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Draayer [15] has shown that the SU(4) irreducible representations [fl,f2,f3, f4] - {AIA2A3}

are spanned by the double rotor wave functions with Ks, KT-values restricted by

(Ks + KT) = - -4),...,0(or + 1),
(Ks-KT) = ±As,±(A3-2),±(Aa-4),...,0(or±l). (30)

Again, it will be useful to introduce symmetrized combinations of the D-functions. The double

rotor coherent state wave functions are then spanned by the symmetrized (normalized) double
rotor functions

1 [(2S + 1)(2T -4- 1)] ½
iF(1 +  KsO KTO) ]

D s T I_2+X3+S+TDS t_ _D T t_ _X { KsMs(_'_s)DKTMT(_'_T) -4- (-- I -KsMs_, S] --KTMT_ , T)_, (31)

and it will therefore be sufficient to choose Ks > 0, and for Ks = 0 : KT > O. The requirement S >__

IKs[, T > [KTI together with the structure of the K:K:f-matrices will determine the multiplicity

of a given S, T value. For states with low values of S -4- T, for which the eigenvalues of K_K:_ are

all nonzero (no redundant states), the number of occurrences of a given S, T will be determined

by the number of possible Ks, KT combinations. States with the maximum possible value of

S + T = A1 + A2 + A3 = f_ - ]'4, and with S(or T)> __ 5(A1 -4- A3), always have an occurrence of 1.

For these S, T-values the K:K;_ matrix always has only a single nonzero eigenvalue giving only a

single nonredundant or physically allowed state. In general, the states with S -4-T > A2 4- 2 will

have )UK:t-matrices with some zero eigenvalues and hence some physically forbidden states. Table

1 gives a specific example, the possible S, T-values for the irreducible representation [8620] With

{A_A2A3} = {242}. In this case there are five possible symmetrized states of the type of eq. (31),

with KsKT = 20, 11, 1 - 1,02, and 00. Note that states with KsKT = 00 must have S-4-T =

even since A2 4- A3 = even. States with both S and T > 2 can thus have a 5-fold occurrence for

S -4- T = even and a 4-fold occurrence for S -4- T = odd. The maximum S -4- T-value is 8 in this

case. States with S -4- T = 8, S(or T)> 2, are all single as indicated in the first column of the

table. The KYKYf-matrix for this case has four eigenvalues of 0. In addition, it can be shown that

the K:K:f-matrices for states with S 4- T = 7 have two eigenvalues of 0, thus reducing the possible

number of physical staltes by two, while states with S -4- T = 6 lead to K:/Cif-matrices with one

eigenvalue of 0 reducing the possible number of physical states by one.

In the VCS rotor expansion operators, O, are transformed into their VCS realizations, F(O),
through O[qJ) _ F(O)_(Ft), with (cf. eq. (6)),

= (32)

The SU(4) generators, O = S, T, E are again of greatest interest. Again, both the left and

right realizations of S and T can be expressed in terms of ,the Euler angles as, _s, 7s and aT,

_T, 7T as in eqs. (8) and (11). Now F(S0) has the simple eigenvalue Ms whereas f'(S0) has

eigenvalue Ks; while F(S+), (F(S_) are _Ms-raising, (lowering)operators, whereas r'(s+), (r'(S_))

are It's-lowering, (raising) operators; with similar properties for the F(T) and ['(T).
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The generators E can be transformed into left-action operators via

r(Emsmr)_(fl) = (¢lR(fl)Ems._rl _)

= (¢l(R(fl)E._._r R-' (_t))R(fl) I_)

= __, (¢]EkskrR(fl)l_)D_sms(fls)D_r,_r(ftT). (33)
kskr

Using the properties of the highest weight state, eq. (27), and the specific expressions of the

generators, eqs. (25), it can be secn that

(¢[Eoo

(¢lE_,o

(¢1E±1±1

= + +
= (¢lEo-,-,=
= ½(¢1(-)_, 4- So 4- To), (¢lE-m:, = _(¢I(M t: So + To)). (34)

At this stage the usefulness of the transformation (22) can be appreciated. Although it seemingly

complicates the relations of the group generators in terms of the CO, it can now be seen that the

transformation (22) makes it possible to express the operators Ekskr in their left actions on the

single highest weight state into equivalent left actions of components of S or T or the Cartan

generators Cii. The relations (34) lead to

1 1
r(Emsmr)_(_) = {½(_, + 2A2 + $3)Do,,s(_ts)Domr(f_T)

1 rD_ D' (fls)F(S-)]D_o,,,r(f_T)
T"_[ i m q (_"_S) r'_(S+ ) -Jr _l,m S

_ :_1D ao..,,s _,'F_s)t'rD',mr (f_T)F(T+) + D',,,,r(f_T)F(T-)]_ '

11 1 F(_o)+_Dxms(f_s)Dl.,r(_T)(-$, + + ['(To))

+½n[x_s(fls)D'_,mr(flT)(-)h - f'(So)- F(To))
1 , 1

+_D,ms(fls)D_,..r(flr)(A3 - F(So) + f'(To))

' ' ' f'(So) I'(To))} (¢IR(fi)I_)+_D_,,,s(fls)Dlmr(FlT)(_a + - (35)

Finally, using the identity

[S2, D_._s(fis)] = v_(Dl..s(fls)F(S+) + D'-_._s (fls)f'(S-)) + 2D_,,,s(fls), (36)

and the similar relation for the isospin operators, we obtain

r(E.,_.,r) = 2}Doms(s) 0,,T(flT){ 1 Aa) 1 F/ D 1_(A1 "4-2)_2 + +

_ ½{[S2, nlLt0rns_,tflSjj_lDlornr(_"_T)3t- DlOms(fls)[T2, D_mT(_T)]}

'' ' _(So)-4- _Dlms(nS)DlmT(nT)(--)_, "4- 3 t- F(To))

' D' (fls)D[lmT(_"lr)(--)_, -- ['(So) - ['(To))+ _ -_ms

'_1 '_ 'D _ (flT)(A3 f'(&) + f'(To))-I- ]lJlm, s( S) -lm T

' D 1 'fl 'D' (_'_T)(,_3 JV F(So) f'(To))@ _ -lms_, S) lm T -- "
(37)

This is the analogue of eq. (12). Using the symmetrized (normalized) rotor basis states of eq. (31)

the standard S and T-space rotational measure, and a standard definition of a spin, isospin reduced
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double-barred matrix element, together with the well-known triple D-function integrals, we obtain

(for the general KsKT case with Ifs + KT > 1) the result

(KsKT; S'T'IIF(E)[[KsKT; ST)
1 •

= [(2S + I)(2T + I)]_<SF,slO[S';Ks)(TKTIOJT'KT)

x{½(Ax+2A2+A3)+2-' ' ' ½S(S 1) a , ,_s(s +1)+ + - + + +1)},_T (T 1) ½T(T

((Ks 4- 1)(KT 4- 1); S'T'JJF(E)[IlisKT; ST }

= ½[(2S + 1)(2T + 1)]½<SKsl 4- IlS'(Ks 4- 1))<TKT1 4- lJT'(KT 4- 1))(-_ 1 4- Ks 4- KT),

<(Ks 4- 1)(KT T 1); S'T'IIr(E)IIKslCT; ST)

= ½[(2s+ 1)(2T + 1)]½<SKs1+ llS'(/(s 4-1))<Tgrl _: llT'(Kr :F1))(_3_: Ks 4-Kr).(3S)

! !. ! _!. 10 and 01 will again require additional terms, (the analoguesThe special cases KsKT = 2 _, 2, 2,

of the special case K = 1 for eq. (13)). The details can be found in ref. [16]. As for the SU(3) case,

the reduced matrix elements of the r(E) are given by very simple expressions involving ordinary

spin (S) and isopin (T) Wigner coefficients with projection labels Ks and KT. Since the F(E) are

nonunitary realizations of the generators E these first have to be translated to unitary form via

' (EEt)_matlii xthe K-operators through the analogs of eq. (15) and (16). The elements are now

calculated most easily through recursion relations such as

(KKt (S', T') )g's K_,, ;l¢'s K_ (Ks2KT_; STIIr( E)tlI¢'s_K_,_;S'T')(-1) s+T-s'-T'
.t -I

I_ S_ET 2

__, (I('s,I¢_,; S'T'III'(E)[II(s,I(T,; ST)(lCEt(S,T))K_h-n;K_K, _
K sa KT1

(39)

If the quantum numbers (A_ + A3)- are not too large, the dimensions of the (EEt) matrices will be

of manageable size so that analytic expressions can be given for the matrix elements as functions

of S, T, and the SU(4) quantum numbers. As a special example, the irreducible representation

[faf2f3f4] = [y + 2, y,0,0] = {A_A2A3} = {2y0} has the simple (EEt)-matrix elements

(EEt (S, T)),,,,, =

(EEt (S, T))oo,oo =

(EEt (S, T)),,,oo

with common factor given by

½[(y + 3)(y + 4) - S(S + 1)- T(T + 1)]CF,

[(y + 3)(y + 2)- S(S + 1)- T(T + 1)]CF,
1

= -[2S(S + I)T(T+ I)]7CF,

CF=
mum

(y + 4 + S + T)!!(y+ 2 - S- T)[!(y+ 3 + S- T)[!(y+ 3 - S + T)!!'

with Num given by

Num = (y + 4)![y![(y + 3)!!(y + 1)!!

= (y + 5)!!(y - 1)!!(y + 2)!!(y + 2)!!

for y=even,

for y=odd.

(40)

(41)

(42)
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Similar (L:L2t)-matrix elements are given in ref. [16] for most of the important SU(4) irreducible

representations.
For the Wigner supermultiplet therefore, as for the SU(3) D SO(3) scheme, the matrix elements

of double (spin and isospin-space) spherical tensor operators, (not necessarily group generators),

can be evaluated by a simple two-step process. By mapping the SU(4) states of good spin and

isospin onto the symmetrized orthonormal basis states of the double rotor coherent state expansion,

very simple expressions are gained for the reduced matrix elements of the F(O'srr). By converting

the nonunitary P(O tsar) to unitary form via the E-matrix technique, these can then be converted

to standard Hilbert space matrix elements in which the labels KsKT are replaced with the quantum

numbers u which enumerate the nonzero eigenvalues A,, of the (K;L:t)-matrix. These A, again

give an author-independent meaning to the quantum numbers, u, where now

= )_,,_,.,/,.+ (I_ SI_T, S'T'IIF(O'S'T)IIKsKT; ST)(_C)_,'sKT,_<,/;S'T'IIO_IIv, ST) _ }2 (;C-' "' ""

Ks_,'r K_K_. (43)

The _-matrix thus effectively elevates the Draayer (Elliott-type) projection labels Ks, KT to the

status of good quantum numbers.

4 A Rotor Coherent State Expansion for the SO(5) D

SO(3) Chain

Very recently, Rowe [18] has also given a vector coherent state rotor realization for the special

irreducible representations [NO] and [NN] of SO(5). With a slight change of emphasis [19] this

rotor construction can be put into exact parallel with that used for the SU(3) D SO(3) and

SU(4) D SU(2) x SU(2) group chains. In the SO(5) basis of good orbital angular momentum,

[ [N1N2] ,... ,. .., LM), there are two missing quantum numbers, in contrast to the mathematically

natural basis [[N_N2] srn_imt) which exploits the local isomorphism between SO(5) and Sp(4)

and labels the states with the quantum numbers of the SU(2) x SU(2) subgroup generated by two

angular momentum generators s and t (not to be confused with the spin and isospin of the last

section). For this reason it will be convenient to express the group generators in the Sp(4) notation

in terms of the particle creation and annihilation operators for a family of spin-+ particles with
l 3 to be denoted by labels a, b, c, d, respectively. In order to generatestates m = + 3, + ½,_ _,- 7

the rotor states in terms of a single intrinsic (maximal weight) state, it will be convenient to make

3 subspace, viz.a rotation in the m = + _, -

1
I,:,> -  (11> + 14)), Ib)= 12),,
Id) + 14)), Ic)= 13);= _(_ii } (44)

where this will achieve the same purpose as the analagous eq. (23).

Since the totally symmetric SO(5) irreducible representations, [NO], are of greatest interest in

nuclear physics applications, we will focus on this case. The rotor coherent state can now again

be given in terms of a single intrinsic state ]¢) via (¢lR(al*). For the totally symmetric irreps,
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[NO], l¢) is now chosen such that

_(c_2- c3,) I¢)=
with

{+.m..},01 (45)

c3_ I¢)= 0; (c13- c2,) I¢)= 0. (46)

I

The group generators are now given by the orbital angular momentum vector L, (a spherical

tensor of rank 1), and the 7 components of a spherical tensor of rank 3, O_. Eqs. (45) and (46)

assure that the left action of these octupole generators can be replaced by operators r'(Lk). In
particular,

5 N(¢1Oo = -(¢1(-_ + _ ),

(¢1o_, = _(¢IL-, (¢1o+, '= _(¢IL+,

(¢1o+_= o, (¢IO_2=-vr_(¢IL+,
(¢10+_= _(¢l(Lo- N),(¢IO-a = 3/!i(¢l(Lo + 2N), (47)

leads to an expression for F(O.,) in terms of the f'(Lk) and D3,,,(_). Analogs of eq. (36) lead to

the simplest form for F(O.,)

5 ,[L2, D03 ]F(O,.) = -Do3,,,(_)(_F(Lo) + 5g + 2) +

- vrgD 3 (_)(r'(L0) N)+_--_303-l-,(_)r(L-) + 3 +3m

.+vf5033,,(fl)(-_f'(L0) -4- _g + 2) - _[L2, D3_3,,]. (48)

Note the parallels between this expression and the comparable eqs. (12) and (37) of sections

2 and 3; but also note that in this case it was now not possible to eliminate both F(L_) and

['(L+). However, the K-raising matrix element of f'(L_) in combination with the K-lowering of

the D3_1,,(_) operator leads to a simple contribution to the matrix element diagonal in K in the

rotor basis, DL.M(ft). The F(Om) of eq. (48) thus lead to very simple matrix elements in the rotor

basis with K' = K, K -4- 3, and K - 3. Williams and Pursey [20] have shown that the allowed K

sequences for the irreps [NO] are the following (with n = integer)

For N = 3n K= ...,-6,-3, 0, +3, -4-6, -4-9,...

For N = 3n+l K= ...,-8,-5, -2, ,4,1, -4-4, +7, ...

For N = 3n+2 K= ...,-7,-4, -1, -4-2, +5, -4-8, ...

Starting with the simplest state for [NO] = [10], with L = 2, with the normalized rotor state

5
_/1--6-_2 {D+IM(Q) -4-D2_2,M(_)}, (49)

totally symmetric rotor states for N > 1 can be built up from simple products of D-functions.

In such a basis the rcduced matrix elements of the F(O_) of eq. (48) are again given by

very simple expressions involving ordinary Wigner coefficients with projection labels K. The K:-

matrix technique of coherent state theory can again be used to convert these to the status of good

quantum numbers, v, through the eigenvalues A,, of the K:K:t-matrix.
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Table 1: The Possible ST-values for the Irrep. [8620]

(60) 1

(61)' (50) 1

(62)' (51) 3

(52) 2 (41) 3

(53)' (42) 4

(43) 2 (32) 4

(44)' (33) 4

(34) 2 (23) 4

(35)' (24)4

(25) 2 (14) 3

(26)' (15) 3

(16) 1 (05)'

(06)'

T T T
4 2 I

(40) 2

(30)I

(31)4
(21) 3

(22?
(12) 3

(13)4

(03)'
(04) 2

(20) 2

(11) a

(02)2

(00)'

The numbers below the arrows give the number of zeros of the ()C)Ct)-matrices in the columns

indicated by the arrows.
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